Globally F-regular and log Fano varieties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Globally F -regular and Log Fano Varieties

We prove that every globally F -regular variety is log Fano. In other words, if a prime characteristic variety X is globally F -regular, then it admits an effective Qdivisor ∆ such that −KX −∆ is ample and (X, ∆) has controlled (Kawamata log terminal, in fact globally F -regular) singularities. A weak form of this result can be viewed as a prime characteristic analog of de Fernex and Hacon’s ne...

متن کامل

Rational Connectedness of Log Q-fano Varieties

Let X be a log Q-Fano variety, i.e, there exists an effective Q-divisor D such that (X,D) is Kawamata log terminal (klt) and −(KX + D) is nef and big. By a result of Miyaoka-Mori [15], X is uniruled. The conjecture ([10], [16]) predicts that X is rationally connected. In this paper, apply the theory of weak (semi) positivity of (log) relative dualizing sheaves f∗(KX/Y + ∆) (which has been devel...

متن کامل

Log Fano Varieties over Function Fields of Curves

Consider a smooth log Fano variety over the function field of a curve. Suppose that the boundary has positive normal bundle. Choose an integral model over the curve. Then integral points are Zariski dense, after removing an explicit finite set of points on the base curve.

متن کامل

Gorenstein Toric Fano Varieties

We investigate Gorenstein toric Fano varieties by combinatorial methods using the notion of a reflexive polytope which appeared in connection to mirror symmetry. The paper contains generalisations of tools and previously known results for nonsingular toric Fano varieties. As applications we obtain new classification results, bounds of invariants and formulate conjectures concerning combinatoria...

متن کامل

Unirationality of Fano Varieties

This note is an extension of the paper [HMP]. The main theorem of [HMP] states that a relatively smooth hypersurface (i.e. a hypersurface whose singular locus has sufficient large codimension with respect to its degree) is unirational. A mild modification can generalize this to complete intersections. As an application, we will show the Fano variety of a relatively smooth hypersurface is also u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2010

ISSN: 0001-8708

DOI: 10.1016/j.aim.2009.12.020